Photo from June Russell

Variety Evaluation for Pasta Making and Sensory Quality

Lisa Kissing Kucek¹, June Russell², Elizabeth Dyck³, Liz Clark⁴, David Benscher¹, Mark E. Sorrells¹, Julie Dawson⁵ ¹Cornell University; ²Greenmarket, Grow NYC; ³Organic Growers Research and Information-Sharing Network; ⁴Gimme! Coffee; ⁵University of Wisconsin-Madison

We thank Gramercy Tavern and The Natural Gourmet Institute for hosting the pasta making and sensory evaluations, respectively

Preliminary Data – 30 March 2015

This work is part of "Value-added Grains for Local and Regional Food Systems", supported by an OREI grant of the USDA

Evaluation Process:

Emmer varieties were screened for use in local organic food systems

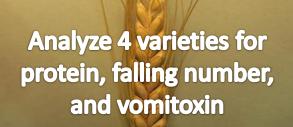
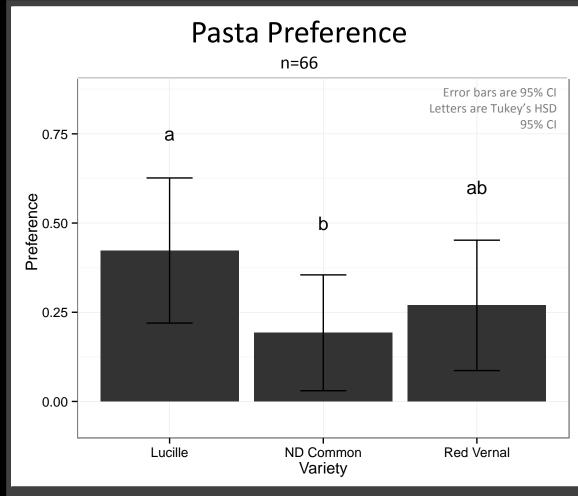
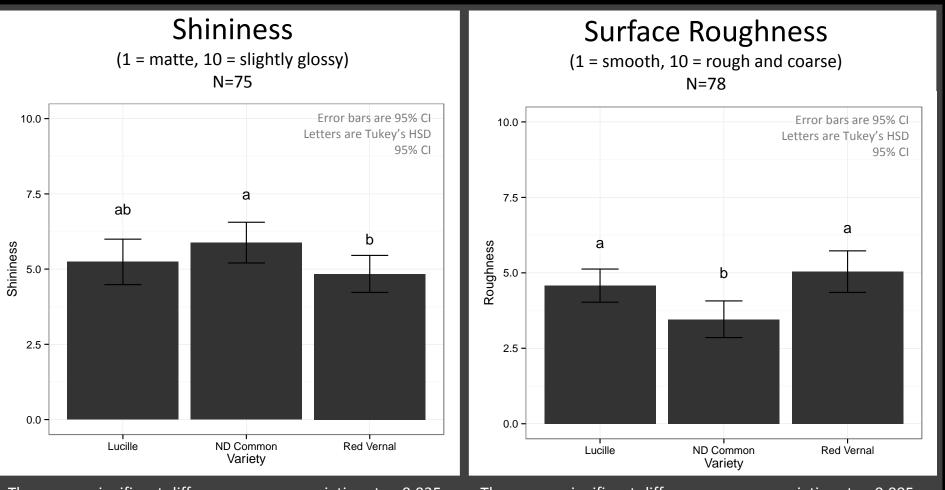


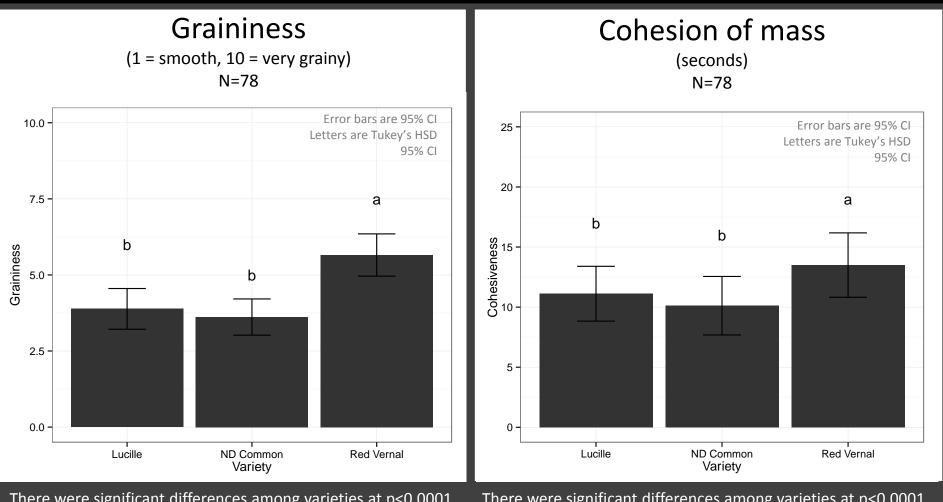
Image from June Russell


Overview of Results

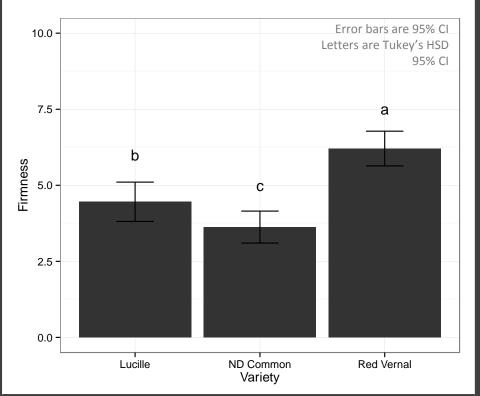
Variety	Yield	Test Weight	Protein	Pasta Preference	Pasta Shininess	Pasta Roughness	Pasta Graininess	Pasta Firmness	Ability to Dissolve	Grain Preference	Grain Texture
Name	$\mathbf{Rank}^{\mathrm{F}}$	Rank [¥]	%	Probability	10=shiny	10=rough	10=grainy	10=chewy	seconds	Probability	10=chewy
Lucille	1	6	14.1	0.42*	5.24	4.58	3.88	4.46*	11.12	0.19	5.42*
ND Common	2	2	13.5	0.19*	5.88*	3.46*	3.61	3.63*	10.12	0.42*	6.27*
Red Vernal	4	4	15.0	0.27	4.84*	5.04	5.65*	6.21*	13.50*	0.15	6.19
	highe	r scorin	g,	lower scoring, *significantly lower or higher than other varieties at p<0.05							


Sensory evaluations were conducted on material blended 45% from 2012 and 55% 2014 harvested emmer from one site in Freeville, NY ¥ Rank is out of 14 total entries at three sites (Pennsylvania; Freeville, NY; Willsboro, NY) and three years (2012-2014)

13 tasters evaluated 3 varieties over 2 replicates


- Lucille: high preference, shininess and roughness; low graininess, cohesion, and firmness
- Red Vernal: high preference, roughness, graininess, cohesion, firmness, and earthy flavor; low shininess
- ND Common: low preference, roughness, graininess, cohesion, and firmness; high shininess
- $$\begin{split} & \text{Type 3 ANOVA} \\ & \text{H}_0; \, \beta_1 \text{=}0; \, \alpha {\leq} 0.10 \\ & \text{Y}_{ijk} = \beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2} + \beta_3 x_{i3} \end{split}$$
- $\begin{array}{l} Y_{ij} \cdot \log \mbox{ odds of a flavor used for sample} \\ B_0 \cdot \mbox{ intercept log odds} \\ B_1 \cdot \mbox{ partial slope associated with variety} \\ x_{i1} \cdot \mbox{ fixed variable of variety i} \\ B_2 \cdot \mbox{ partial slope associated with rep} \\ x_{i2} \cdot \mbox{ fixed variable of rep i} \\ B_3 \cdot \mbox{ partial slope associated with taster} \\ x_{i3} \cdot \mbox{ random variable of taster I} \end{array}$

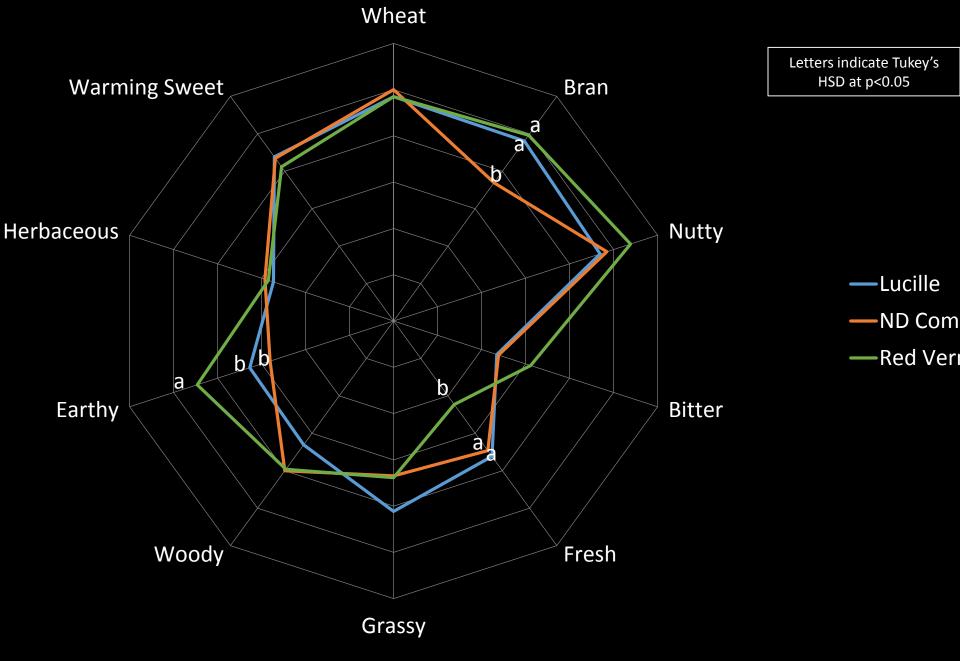
There were significant differences in preference among varieties at p=0.032



There were significant differences among varieties at p=0.035. Subject accounted for 31.76% of variance. There were significant differences among varieties at p=0.005. Subject accounted for 15.97% of variance.

There were significant differences among varieties at p<0.0001. Subject accounted for 17.74% of variance. There were significant differences among varieties at p<0.0001. Subject accounted for 88.26% of variance.

Firmness (1 = falls apart, 10 = very chewy) N=72


There were significant differences among varieties at p<0.0001. Subject accounted for 44.89% of variance. Surface stickiness (p=0.759) and starch texture (p=0.300) not significantly different among varieties

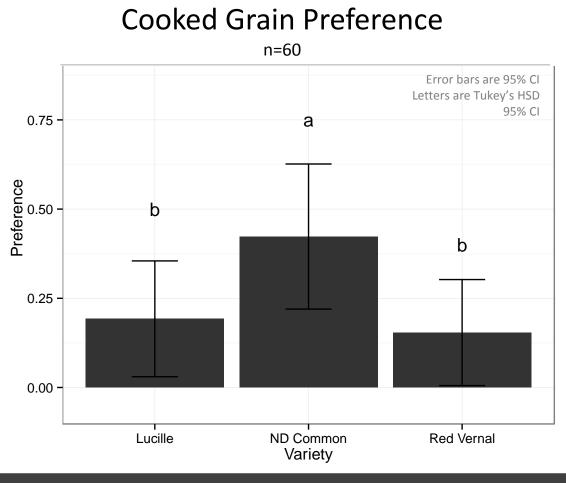
Type III ANOVA with Sattherwaite approximation $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6 = \mu_7$; $\alpha \le 0.05$

 $Y_{ijk} = \mu + \alpha_i + \beta_j + \gamma_k + \varepsilon_{ijk}$

- y_{ij} : response for variety i, rep j, order k, and subject l
- $\boldsymbol{\mu}\!\!:\!\!$ overall mean response
- α_i : fixed effect of variety i
- B_j: fixed effect of rep j
- γ_k : random effect of subject k
- $\boldsymbol{\epsilon}_{ijk}\!\!:\!$ experimental error associated with response I,j,k

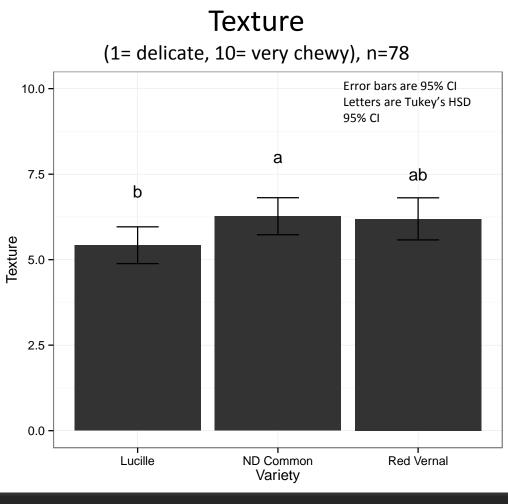
Pasta Intensity of Various Flavors

Cooked Whole Grain Sensory Evaluation


13 tasters evaluated 3 varieties over two replicates

- ND Common: highest preference and most chewy texture, dominated by bran, woody, wheat, and nutty flavors
- Lucille: low test preference, least chewy, dominated by nutty, wheat, and grassy flavors

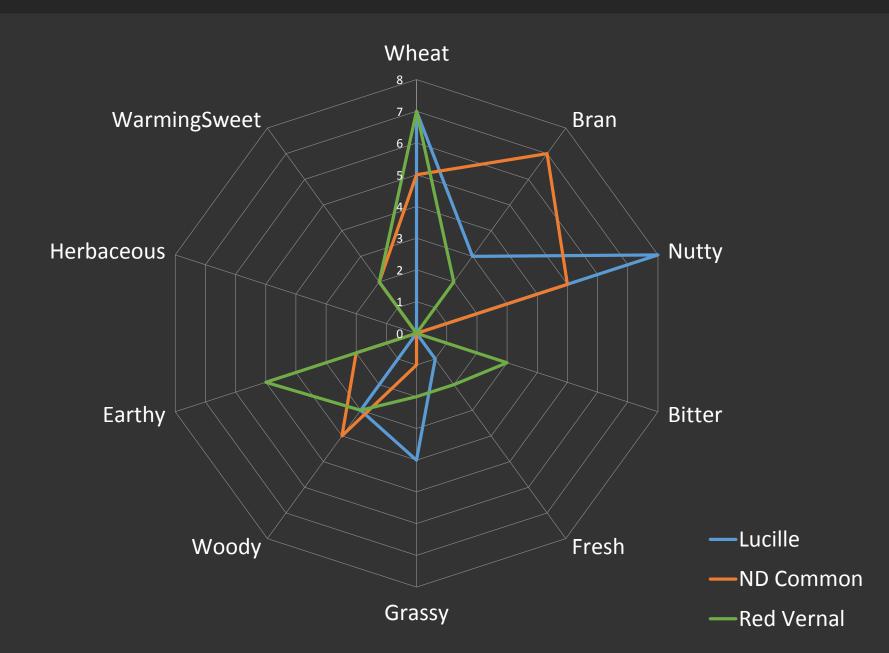
 Red Vernal: low preference, dominated by earthy, bitter, and wheat flavors


$$\begin{split} & \text{Type 3 ANOVA} \\ & \text{H}_0: \, \beta_1 \text{=}0; \, \alpha {\leq} 0.10 \\ & \text{Y}_{ijk} = \, \beta_0 + \, \beta_1 x_{i1} + \, \beta_2 x_{i2} + \, \beta_3 x_{i3} \end{split}$$

 $\begin{array}{l} Y_{ij} \cdot \text{ log odds of a flavor used for sample} \\ B_0 \cdot \text{ intercept log odds} \\ B_1 \cdot \text{ partial slope associated with variety} \\ x_{i1} \cdot \text{ fixed variable of variety i} \\ B_2 \cdot \text{ partial slope associated with rep} \\ x_{i2} \cdot \text{ fixed variable of rep i} \\ B_3 \cdot \text{ partial slope associated with taster} \\ x_{i3} \cdot \text{ random variable of taster I} \end{array}$

There were significant differences in preference among varieties at p=0.038

Cooked Whole Grain Sensory Evaluation

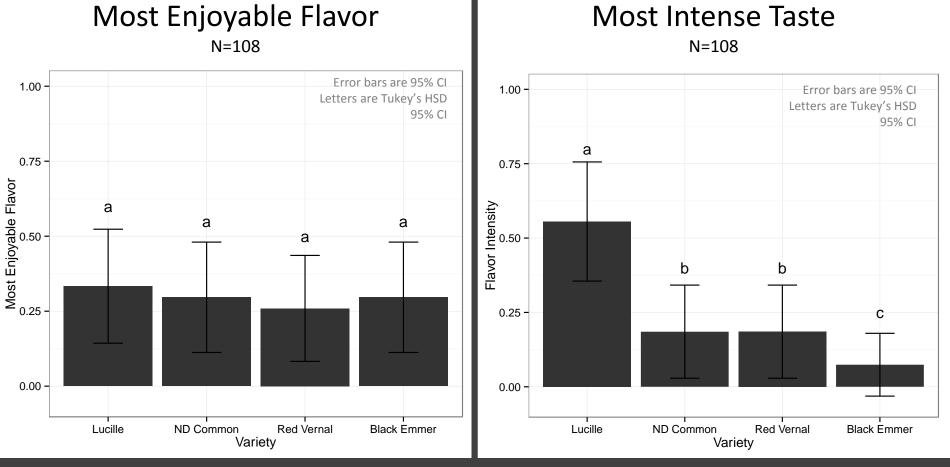

There were significant differences among varieties at p=0.033. Subject accounted for 21.96% of variance.

Whole grain taste intensity (p=0.326) and dryness (p=0.539) were not significantly different by variety.

Type III ANOVA with Sattherwaite approximation $H_0: \mu_1 = \mu_2 = \mu_3 = \mu_4 = \mu_5 = \mu_6 = \mu_7$; $\alpha \le 0.05$

$$\begin{split} \mathbf{Y}_{ijk} &= \boldsymbol{\mu} + \boldsymbol{\alpha}_i + \boldsymbol{\beta}_j + \boldsymbol{\gamma}_k + \boldsymbol{\epsilon}_{ijk} \\ y_{ij}: \text{response for variety } i, \text{ rep } j, \text{ order } k, \text{ and subject I} \\ \mu: \text{ overall mean response} \\ \alpha_i: \text{ fixed effect of variety } i \\ B_j: \text{ fixed effect of rep } j \\ \boldsymbol{\gamma}_k: \text{ random effect of subject } k \\ \boldsymbol{\epsilon}_{ijk}: \text{ experimental error associated with response I, j, k} \end{split}$$

Cooked Whole Grain Most Prominent Flavor



Cooked Whole Grain Public Preference Tasting

26 tasters evaluated 4 varieties in one replicate

Varieties were grown at a different site than the materials used for the sensory evaluation

Black Emmer was grown as a winter at a different site than the spring-grown Lucille, ND Common, and Red Vernal

There were no significant differences in probability of being rating as most enjoyable flavor among varieties at p=0.55

There were significant differences in probability of highest taste intensity among varieties at p<0.0001

Type 3 ANOVA H₀: β_1 =0; $\alpha \le 0.10$ Y_{iik} = $\beta_0 + \beta_1 x_{i1} + \beta_2 x_{i2}$ Y_{ij}: log odds of a flavor used for sample;

 B_0^{-} : intercept log odds; β_1 : partial slope associated with variety ; β_2 : partial slope associated with taster x_{13} : random variable of taster I; x_{11} : fixed variable of variety j